Synthesis for Verification

Robert Brayton, A. Mishchenko

BVSRC
UC Berkeley




Sequential Verification

e Property checking

e Create miter from the design and
the safety property
e Special construction for liveness
Biere, Artho, Schuppan
e Equivalence checking D1

e Create miter from two versions
of the same design

?
I

0

Property checking miter

e Assuming the initial state is given Equivalence checking miter

e the goal is to prove that the output of
the miter is O, for all states reachable

?
I

from the initial state. F 0]
TLC I
D




ldealy

e If simplifiers were perfect
e Could simplity output to constant O

e Need to SUEHE
PSPACE-complete

e Sometimes it works

e However,

e It is a good heuristic to simplify at first as
much as can be afforded

e Down-stream engines work better on smaller
circuits. ;




Integrated Verification Flow

1. Simplifications

2. Abstractions
® |ocalization Abstraction
® Speculation

3. High effort verification




Concurrent Prover Flow - hybrid

super_prove

Start
l Means end with a definitive answer || means runs concurrently

I | UNSAT
| SAT

<— c_verify

% undecided\

/ C_Verify | |n|t|a|_
gETSAT undecided >\’ _-"bad 7

c_verify |Il | initial_

is the basis undecided
for almost all operations (c_verify) |« =
on this chart

undecided
S
. vﬂne‘ | SAT




Synthesis for SAT

minimizing CNF

e SAT is the basis for ~95% of all operations
In current verification methods

e Important to map circuits into CNF so that
it is easier for SAT
e (fewer clauses, less variables)

e The best method for this is done by
“technology” mapping
e Map into 8 input LUTs
e Get truth table, canonicize, hash CNF

e Can make SAT solving 1.5-3 times faster. °




Simplification
pre simp

Sequential
transformation

o , (scl)
e rewriting, (dc2, syn2)

e (minimum area and most forward),
e reparametrization, (reparam)




Simplification
pre simp

o , (scl)

e rewriting, (dc2, syn2)

e retiming (minimum area and most forward),
e reparametrization, (reparam)

e phase abstraction,

e temporal decomposition,

e constraint extraction,

o , (scorr)




Sequential cleanup

e structural hashing (strash)
e Works on AlG

e Hash on input IDs
e remove dangling logic

e ternary simulation
e ternary simulate until fixed point
e insert and propagate constants
e strash

Very fast — ~1M aigs in a ~sec.




Signhal Correspondence

Two kinds

® SCOrr

k-step induction
e slower, but
e better results

for medium size circuits (upto ~50K aig nodes)

e &scorr

modified for large circuits (upto ~1M aig nodes)
e faster, but
e less quality results

Similarity with combinational SAT sweeping

10




Combinational SAT Sweeping

0- UNSAT?

combinational
circuit

Proving internal equivalences
in a topological order

Nailve approach
e build output miter — call SAT
e works well for many easy problems

Better approach - SAT sweeping
based on incremental SAT solving

detects possibly equivalent nodes
using simulation

candidate constant nodes
candidate equivalent nodes
create “miter” circuit

runs SAT on the intermediate
miters in a topological order

refines candidates using
counterexamples

merges nodes if proved




Sequential SAT Sweeping
(signal correspondence)

Similar to combinational SAT sweeping
e detects node equivalences
e But the equivalences are sequential
guaranteed to hold only on the reachable state space
e Every combinational equivalence is a sequential one
=» run combinational SAT sweeping first

A set of sequential equivalences are proved by k-step
iInduction
Base case
Inductive case
iteration until fixed point set is proved
Efficient implementation of induction is key!




k-step Induction (scorr)

Base Case
(just for k cycles)
Candidate equivalences: {A = B}, {C = D}

Inductive Case

Proving internal
equivalences in
a topological
order in frame k
+1

Assuming internal
equivalences in
uninitialized frames
1 through k

If proof of any
equivalence fail,
remove and restart

initial

state
Proving internal equivalences in
initialized frames 1 through k




Efficient Implementation

Two observations:

1. Both base and inductive cases of k-step induction are
combinational SAT sweeping problems

e T[ricks and know-how from the above are applicable
base case is just

e The same integrated package can be used
starts with simulation
performs node checking in a topological order
benefits from the counter-example simulation
2. Speculative reduction

e Deals with how assumptions are used in the
Inductive case




K-step Induction (scorr)

Candidate equivalences: Inductive Case

{A =B}, {C =D}

Proving internal
equivalences in a
topological order in
frame k+1

K=2

Pl

T.:;:ﬁ:‘::

internal

equivalences in
uninitialized frames
1 through k




K-step Induction (scorr)

Inductive Case

Candidate equivalences:
{A =B}, {C =D}

K=2

Combine fanouts
Strash




k-step Induction (&scorr)

Inductive Case

&SRM is an
abstraction of SRM
If all ? proved UNSAT
(=0)
 all equivalences
are proved

Candidate equivalences:
{A =B}, {C =D}

k=2 Combine fanouts

Keep only
representative of each
equivalence class (B
and D removed)

* no assumptions

Strash and propagate
constants

arbitrary state

_____ J




\ierfication ftor\Syritbesos

e For sequential synthesis we need scalable
methods
e Three types fit the bill
e Sequential cleanup (scl)
e Signal correspondence (scorr, &scorr)
e Retiming

Not state minimization, state encoding, etc.




Speculation

Speculate on equalities/constants
Set up miters and create SRM
» Multi-output verification problem

Prove them for reachable states
« Use any verification methods that work
* Not necessarily based on k-step induction

If any equalities/constants are disproved,
* Eliminate, build new SRM, and start over.




Verification Engines (Summary)

e Simplifiers
e Combinational synthesis
e Sequential synthesis
Sequential cleanup
Retiming
Sequential SAT sweeping (k-step induction)
e Re-parametrization

e Retiming (most forward and minimum FF)

e Bug-hunters (also part of abstraction methods)
e random simulation (sequential)
e bounded model checking (BMC)
e Property directed reachability (PDR)
e BDD reachability

e Provers

e k-step induction, with and without constraints
Interpolation (over-approximate reachability)
Property directed reachability (PDR)

BDDs (exact reachability)
Explicit state space enumeration (‘era’)




Conclusions

e Simplification is a major contributor to efficient verification
e initially
e during abstractions
e for generating small CNF
e Needs a of fast sequential synthesis methods
e scl
® scoIr
e &scorr
e Sequential synthesis is becoming of more interest to industry
e Verification engines can be used







